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Abstract. We investigate the propagation of cw (continuous wave) circularly symmetric
Gaussian beams in a nonlinear saturable medium using a modified variational approach. We
find the equations that describe the characteristics of the beam, solving them analytically in
various regimes. We also determine the conditions under which these solutions may be stable
in two transverse dimensions. Finally, we solve these equations numerically in the case of loss,
comparing them with the lossless analytical solutions in the limit of small losses.

As is well known, strong beams of electromagnetic radiation propagating in a transparent
medium may be subject to self-focusing as the result of a field-dependent refractive index.
When the nonlinear focusing effects are balanced by the defocusing diffraction, a self-
trapped mode of propagation is possible [1]. Various approximation schemes based on
Gaussian ansatz functions have been devised, notably the paraxial ray theory [2, 3], which
is known to ascribe too much importance to the central parts of the beams. It has been
suggested [4, 5] that spatial diffraction leads to spectral features which are quantitatively
and qualitatively different from those of the conventional self-phase modulation results. In
particular, it has been claimed that, under certain circumstances, the blue might lead the red
in the supercontinuum, thus opening the possibility for pulse compression without external
grating.

In the theoretical treatment of these problems, much attention has been given to the
variational approach [6–8]. A variational approach was employed in [8] deriving information
about the various parameters that characterize the beam, which are qualitatively as well as
quantitatively, in good agreement with numerical results [7]. This result invalidates the
possibility of pulse compression without external grating which is erroneous and is only an
artifact of the paraxial approximation. The discussion above does not consider the presence
of the loss in the medium. It is well known that in real materials, the medium will not be
purely transparent and the nonlinearity will not be of pure Kerr-law form, but will saturate.

Solitary wave solutions have been known to exist in a variety of nonlinear, dispersive
media for many years. In the context of optical communications, Hasegawa and Tappert [9]
first made the important observation that a pulse propagating in an optical fibre with Kerr-law
nonlinearity can form an envelope soliton. This offered the potential for undistorted pulse
transmission over very long distances. Just as a balance between self-phase modulation
and group-velocity dispersion can lead to the formation of temporal solitons in single-mode
fibres, it is also possible to have the analogous spatial solution, where diffraction and self-
focusing can compensate for each other [10].

0305-4470/98/071761+09$19.50c© 1998 IOP Publishing Ltd 1761



1762 D S Freitas et al

A variational approach was employed by Anderson [11] in order to describe the main
characteristics of the temporal soliton as determined by the cubic nonlinear Schrödinger
(NLS) equation. These results were recently applied to the problem of propagation of cw
Gaussian beams in a saturable medium with loss [12]. In this work [12] the diffraction is
limited to one transverse solution. Hence we treat the problem in a more complete form,
where we take into account the full cylindrical symmetry, i.e. two transverse directions.

The problem of describing the physical properties of dissipative systems has been the
subject of lengthy discussions [13]. In order to develop a consistent classical formalism
which includes dissipation, Herreraet al [14], proposed a variational principle which
represents a modification of the Hamilton principle.

In this paper, we will analyse the dynamic interplay between nonlinearity and spatial
diffraction through an optical saturated medium with loss using a variational approach in
the form employed by Herreraet al. In the lossless case, exact analytical expressions for
the behaviour of the beam are determined, and stable solutions for the spatial solitons in a
Kerr-law medium with two transverse dimensions are obtained.

The starting point of our analysis is the conventional equation for the envelope of the
circulary symmetry scalar fieldE through the medium with loss,
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wherer is the radial coordinate,z is the longitudinal coordinate,k is the linear wavenumber,
and the refractive indexn is assumed to be the form

n = n0− iαc

2ω
+ n2|E|2− n4|E|4

with n0 the linear refractive index of the medium,α the medium loss,n2 the third-order
nonlinear coefficient andn4 the fifth-order nonlinear coefficient.

Now we can handle equation (1) adequately in the form
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E∗ is the complex conjugate ofE and subindexesr, z are the differentiation with respect to
r andz. L is the Lagrangian of the system without loss. Equation (2) is the Euler–Lagrange
equation in the modified form that describes the propagation of the beam in the medium
with loss, and can be written in the form of the modified Hamilton principle [14],
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Assuming a trial functional of the form
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and using the variational formulation, equation (3), we can integrate ther dependence
explicitly to obtain
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where
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Then, from the standard calculus, deriving〈eαzL〉 with respect toA, A∗, a andb we obtain
the following system of coupled ordinary differential equations:
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It is obvious that once equation (7d) is solved fora(z), the other pulse characteristics are
easily obtained from equations (7a)–(7c). In particular, if the longitudinal phaseφ of the
amplitudeA is introduced by writingA = |A| exp(iφ), equation (7b) can be written as
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This system of equations has no analytic solutions. However, we initially look at the lossless
case, by settingα = 0, and show that in this case analytic solutions can be found.

In the case of lossless Gaussian beam propagation in a saturable nonlinear medium we
focus our attention on equation(7d) since, oncea(z) is determined,b(z) andφ(z) can also
be found, and thus a knowledge of the dynamical behaviour of the cw beam can ascertained.

We normalize the spot width to the initial width by lettingy(z) = a(z)/a0, so that
equation (7d) becomes
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and we have used the fact that equation (7a) implies that|A|2a2 = A2
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2
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z. For this case it is not difficult to show, upon integration, that the spot width satisfies the
dynamical equation
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The behaviour of the spot width is controlled by the nature of the potential function
π(y), since equation (10) can be interpreted as apoint mass[12] under the influence of the
potential. It is clear that asy → 0+, π(y)→∞, and that asy →∞, π(y)→−(µ−ν+λ).
We note also thatπ(1) = 0. We are able to find solutions for the spot width by looking at
the integral

±
√

2z

k
=
∫ y

1

dy√−π(y) (12)

and the type of solution will depend on the(µ, ν, λ) parameter space.
In figure 1, the potential functionπ(y) is plotted for different regions of the(µ, ν, λ)

parameter space. The nature of the potential function allows us to subdivide the parameter
space as follows: (a)µ + λ − ν > 0; (b) µ + λ − ν < 0, with three subregions
(i) µ+ λ < ν < 2λ+µ, (ii) ν > 2λ+µ and (iii) ν = 2λ+µ; and (c)µ+ λ− ν = 0. The
dynamics of the beam in each of these regions will be now investigated.

Figure 1. Qualitative plots of the potential functionπ(y) in the (µ, ν, λ) parameter space:
ν < µ+ λ (— · · —); µ+ λ < ν < µ+ 2λ (- - - -); ν > µ+ 2λ (——).

(a)µ+ λ− ν > 0. Forν < µ+ λ, the spot width once released aty = 1 will increase.
The combined effect of linear diffraction and fifth-order nonlinearity overcome the cubic
nonlinearity, so no stable solution exists.

In this case the solution of equation (9) is given by
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where5(µ̃, 1, q) andF(µ̃, q) are the incomplete and the elliptic function of the first kind,
respectively, with

µ̃ = arcsin

√
y2− 1

y2− λ2/(µ+ λ− ν)2 q = λ/(µ+ λ− ν).
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As we can see, the Gaussian beam is diffracting as the spot width increases with
increasingz as is shown in figure 1. For the special case in whichµ = ν, the solution is
given by

√
2λz

k
=
√
π0(−1/4)

40(1/4)
+ y[2F1(−1/4, 1/2, 3/4, 1/y4)] (14)

where 2F1 is the hypergeometric function and0 is the gamma function. In this case we
notice that even with the balance between diffraction and cubic nonlinearity the beam keeps
diffracting due to the presence of the fifth-order nonlinearity.

(b) µ+λ−ν < 0. In this region, we see that the potential function has a minimum (i.e.
dπ(y)/dy = 0) at ye =

√
2λ/(ν − µ) and zeros aty0 = 1 andy1 =

√−λ/(µ− ν + λ).
We further noteπ(ye) 6 0. For this case the solution is given by
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(i) µ + λ < ν < 2λ + µ. In this region, the potential function has two real roots
with y1 > y0. Here, a beam withy0 = 1 would initially diffract until it attains the largest
possible value aty1, at which stage self-focusing effects become dominant and the spot width
decreases, returning to its minimum valuey0. As the spot width executes a homoclinic orbit,
the resultant behaviour is oscillatory.

(ii) ν > 2λ+µ. Herey1 < y0, and thus the spot width initially decreases until it attains
the minimum valuey1, at which point it becomes sufficiently small so that diffractive forces
dominate and the spot width increases again until it reaches the maximum valuey0. Once
again, the behaviour in this region is oscillatory.

(iii) ν = 2λ + µ. For the special case in whichye = 1 and dπ(1)/dy = π(ye), the
potential well has degenerated into a single point and a particle released at this point will
remain there. This translates into a beam propagating undistorted. There is an exact balance
between the competitive forces of diffraction, self-focusing and saturation. The steady-state
spot width is given by

1
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(c) µ+ λ− ν = 0. In the limiting case, the solution is given by

2

√
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k
z = y

√
y2− 1+ ln[y +
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and quite clearly the Gaussian beam is diffracting as the spot widthy increases with
increasingz.

Figure 2 illustrates the beam spot width variations as functions of the propagation
distance for the different regions of the (µ, ν, λ) parameter space. Forµ + λ − ν > 0 the
spot width will increase diffraction with increasingz. For ν < 2λ+ µ the spot width will
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Figure 2. Propagation dependences of the normalized spot width in the (µ, ν, λ) parameter
space:ν < µ+ λ (— · · —); µ+ λ < ν < µ+2λ (- - - -); ν > µ+2λ (——) andν = µ+2λ
(— · —). The initial width isa0.

have oscillating diffraction. Forν > 2λ+µ the spot width will have oscillating self-focusing
and finally for ν = 2λ + µ the beam will propagate undistorted. Forµ + λ − ν = 0 the
spot width will increase diffraction. For the phase shiftφ(z) we can see from equation (8)
that the phase is dependent onz througha(z). As we can see, the behaviour of the phase
will be associated with the behaviour of the width.

We are now in a position to investigate the stability of cw circularly symmetric Gaussian
beams in this (µ, ν, λ) parameter space. According to equation (10), a perturbation from
the equilibrium makes d2y/dz2 6= 0. If a variation in the beam parameters is such that it
tends to re-establish the delicate balance between diffraction and self-focusing, the beam is
said to be stable, otherwise it is unstable.

Stability may be determined by performing a Taylor expansion of the potential about
the equilibrium pointy ' yc [12], and linearizing the dynamical equation to find

k2 d2

dz2
(y − ye)+ d2(ye)

dy2
(y − ye) = 0 (19)

with

d2π(ye)

dy2
= (ν − µ)3

λ2
.

For µ+ λ− ν < 0 (ν > µ) the quantity d2π(ye)/dy2 is always positive, indicating stable
equilibrium. The spot width will oscillate with the period given by

zp = λkπ√
(ν − µ)3

.

These results show that the optical beam in a saturated nonlinear medium with two transverse
dimensions is stable.
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In the case of Gaussian propagation with loss in a saturable nonlinear medium we set
α 6= 0. As mentioned earlier, ifα 6= 0 then no exact solutions exist for the set of coupled
equations given by equations (7a)–(7d). The equation characterizing the dynamics of the
spot width in a saturable nonlinear medium with loss is given by

k2 d2y

dz2
= 2µ

y3
− 2ν

y3
e−αz + 4λ

y5
e−2αz. (20)

Numerical solutions have recently been published for the Gaussian beam limited to
one transverse dimension [12]. It was found that the fifth-order nonlinearity considerably
modified the beam propagation and that the spot width of a cw Gaussian beam initially
oscillates, passing through a series of maxima and minima before finally diffracting. The
presence of the attenuation reduces the number of oscillations. We now investigate the
dynamics of the beam propagation in a lossy medium by numerically solving equation (20)
in the limit of small losses. The results of the numerical analysis are depicted in figures 3
and 4 where we have made a comparison with the lossless analytical solutions that we
have obtained. We have considered the situations where the spot width undergoes initial
decompression and also initial compression.

Figure 3. A comparison of the analytical solution for the variation of normalized spot width in
the regionµ+ λ < ν < µ+ 2λ with the numerical solution in the case of loss. (i)αka2

0 = 0,
(ii) αka2

0 = 0.015. The beam width isa0.

The numerical results show that the spot width of a cw Gaussian beam initially oscillates,
passing through a series of maxima and minima before finally diffracting. The presence
of the attenuation reduces the number of oscillations. These numerical results show that
the two transversal Gaussian beams have identical behaviour to that of the one transversal
Gaussian beam [12].

In conclusion, the propagation of Gaussian beams with cylindrical symmetry in a
nonlinear saturable medium with and without loss has been analysed using a variational
modified approach. This modified approach describes in a more consistent way the
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Figure 4. The same as in figure 3 but in the regionν < µ+ 2λ.

behaviour of the beam in dissipative systems. In the lossless case, we were able to find exact
analytic solutions for the behaviour of the spot width, and to determine conditions under
which steady-state propagation was possible. Numerical solutions for Gaussian beams under
dissipation were also considered, and these results show that the presence of the dissipation
affects the nonlinearity and contributes to the diffraction of the beam.
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